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Abstract
Quantum condensation of electron–hole (e–h) systems in photoexcited
semiconductors is reviewed from a theoretical viewpoint, stressing the exciton
Bose–Einstein condensation (BEC), the e–h BCS-type condensed state, the
exciton Mott transition, and the biexciton crystallization. First, we discuss the
crossover between the exciton BEC and the e–h BCS states at low temperature
using the self-consistent t-matrix and local approximations, applied to the high-
dimensional two-band Hubbard model with both repulsive and attractive on-site
interactions. We also study the metal–insulator transition (called the ‘exciton
Mott transition’) at zero and finite temperatures, investigated with the dynamical
mean-field theory. Away from half-filling we find excitonic/biexcitonic
insulating phases and the first-order transition between metallic and insulating
states. Second, in a one-dimensional e–h system, we employ the exciton
bosonization and renormalization-group techniques to clarify quantum orders
at zero temperature. The most probable ground state exhibits the biexciton
crystallization, which reflects the Tomonaga–Luttinger liquid properties, the
e–h backward scattering, and the long-range Coulomb interaction. The one-
dimensional e–h system is insulating even at the high-density limit, hence the
exciton Mott transition never occurs at zero temperature in one dimension.

1. Introduction

For more than three decades, electron–hole (e–h) systems realized in photoexcited
semiconductors have been intensively investigated both theoretically and experimentally [1],
not only because the e–h systems govern optical properties of matter but also because various
quantum cooperative phenomena are expected to take place depending on particle density,
temperature and dimensionality [2, 3]. Several areas of interest in e–h systems arise. (i)
What kind of quantum order is formed? (ii) How does such quantum order emerge in time
and space? (iii) What are the optical responses, e.g. absorption, gain, photoluminescence, and
nonlinear optical processes, of such quantum order like? In this paper we pay attention to
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question (i). Here we shall define the term ‘quantum order’ in e–h systems. The e–h system is
an excited state composed of two oppositely charged fermions, electrons and holes. Then this
system is inherently nonequilibrium with a finite lifetime due to the interband recombination
of nanosecond order. In usual inorganic semiconducting materials, e.g. GaAs, the intraband
relaxation (of picosecond order) is much faster than the interband one (nanosecond order) [4].
In a timescale just after the photoexcitation and before the interband relaxation time, therefore,
the system gets settled in a quasi-thermal-equilibrium state, where electrons and holes are
approximately in (quasi)equilibrium at (quasi)temperature in each band. We here consider such
a situation. Dynamical features of carrier relaxation processes in e–h systems are not treated in
this paper. Note that the number of electrons is equal to that of holes in our definition of ‘e–h
systems’. Thus optical properties of initially doped semiconductors are out of this paper [5].

We shall guess intuitively what happens in an e–h system as the particle density increases,
controlled by the excitation light intensity. In the low-density limit where only one electron
and one hole are excited, an ‘exciton’ may be formed as a bosonic bound state of an electron
and a hole [6]. Dimensionality dependence of excitons is also quite interesting [1, 7].
When two electrons and two holes are excited, a ‘biexciton’ (an excitonic molecule) is
a possible bound state (also bosonic); this biexcitonic state reflects characteristics of the
exciton–exciton interaction [8], and affects crucially the third-order optical nonlinearity of
semiconductors [9]. Thus, how the optical responses of semiconductors depend on the number
of excitons/biexcitons is a long-standing problem in the e–h physics.

In the case of stronger photoexcitation, where many electrons and holes are excited in
semiconductors, many-body effects and the so-called electronic correlations should be taken
carefully into account. In this case, macroscopic quantum phenomena, that is, e–h pair
condensations, are expected, e.g. the Bose–Einstein condensation (BEC) of excitons [10–14]
and the e–h superconductor-like state (e–h BCS state) [15, 16]. At very low temperature and at
relatively low e–h particle density (strong-coupling regime), strongly bound e–h pairs undergo
the BEC as an exciton gas. On the other hand, at high e–h density (weak-coupling regime)
where the mean interparticle distance is shorter than the exciton Bohr radius, weakly bound
e–h pairs may behave like the Cooper pairs in conventional superconductors at sufficiently low
temperatures, that is, the Bardeen–Cooper–Schrieffer (BCS) state of e–h pairs. In the first half
of this paper, we shall discuss these BEC and BCS states and the crossover with the use of
the self-consistent t-matrix approximation and the local approximation, which are valid for the
higher-dimensional systems.

Dissociation of many excitons (or biexcitons) into a gas state of electrons and holes (called
the ‘e–h plasma’) may also be possible as the particle density further increases. This is called
the ‘exciton Mott transition’ (insulator-to-metal transition). The main origins of this Mott
transition are the Pauli blocking and enhancement of the Coulomb screening, which weaken
the binding energy of the e–h bound states [2]. In the middle of this paper, details of the exciton
Mott transition will be studied with the dynamical mean-field theory (DMFT) [17] for arbitrary
particle density. The gas–liquid phase separation dynamics in an e–h plasma state [18–22]
will not be discussed in this paper. In any case, the interparticle Coulomb interaction plays an
essential role in the e–h problems.

In order to clarify the dimensionality of the e–h systems, we will investigate quantum
orders in one-dimensional (d = 1) e–h systems. Since the simple perturbation theory based on
the Fermi liquid picture [23] is not applicable to d = 1 systems, we employ the bosonization
technique [24] and the renormalization-group method. From the theoretical point of view,
d = 1 e–h systems are highly special, since in d = 1 an electron and a hole form an exciton
bound state even when the attractive e–h interaction is infinitesimally weak. Therefore, we
naively expect that the exciton Mott transition may be absent in d = 1. This argument
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above, however, is insufficient since the Pauli blocking and dynamical screening effects are
not considered. With increasing e–h particle density, the system goes to the weak-coupling
regime, where the characteristic interaction energy is much smaller than the Fermi energies of
electrons and holes. In this regime, hence, the bosonization method has advantages in that it
can take full account of the interaction processes. We apply this technique to the d = 1 e–h
system with the long-range Coulomb interaction in the last part of this paper. We will discuss
the possibility of the biexciton liquid and crystal [25, 26] in d = 1 systems at absolute zero
temperature.

This paper is organized as follows. In section 2, e–h quantum condensation at low
temperature is discussed to clarify the crossover between the exciton BEC and the e–h BCS
state. Section 3 is devoted to an analysis of the exciton Mott transition of normal (not pair
condensed) phases of the e–h system. In both sections, we employ the two-band Hubbard
model solved with a formalism of the dynamical mean-field theory (DMFT) combined with
the t-matrix approximation, the local approximation, or the numerical exact diagonalization
technique. The one-dimensional e–h system is analysed in section 4 by the bosonization and
renormalization-group methods.

2. Exciton BEC and e–h BCS states in high-dimensional e–h systems

In this section, the crossover [27–30] between the exciton BEC and the e–h BCS-like state
is studied to clarify differences from the BCS–BEC crossover in superconductors or trapped
atomic Fermi gases [31–34]. Compared with other systems undergoing condensation of bound
pairs, electrons and holes in quasi-thermal-equilibrium semiconductors have the following two
notable characteristics: they have different effective masses and mass anisotropies [35, 36],
and they involve not only the e–h attractive Coulomb interaction U ′ but also the repulsive one
U between like particles besides the Pauli exclusion principle. In contrast to conventional
superconductors, the attractive and repulsive interactions have the same energy scale.
Therefore, we have to treat U and U ′ on an equal footing.

By calculating the condensation temperature Tc, we will clarify the effects of the repulsive
interaction and the mass difference on the e–h pair condensation from the BCS to the
BEC regime [37]. A simple two-band Hubbard model with attractive and repulsive on-
site interactions is adopted to describe the e–h systems. Here we suppose that conduction
electrons and valence holes, whose bands are isotropic, have infinite lifetime, and the number
of electrons is equal to that of holes (Ne = Nh). In our model the interaction strengths and
the particle density n ≡ Ne/N = Nh/N are treated as independent parameters (where N
is the total number of lattice sites). We employ the self-consistent t-matrix approximation
(SCTMA) [38–40]. This approximation deals correctly with two-particle correlations. In
addition to the SCTMA, we also use a local approximation (LA), which is justified in high
spatial dimensions. The procedure is to neglect the momentum dependence of the self-energy
and the vertex function. The SCTMA combined with the LA has been known to be successful
for the superconductivity of the single-band attractive Hubbard model in high dimensions [40].
In particular, the successive interpolation between the BCS limit with Tc ∝ exp(t/U ′) and
the BEC limit with Tc ∝ t2/U ′ can be described well [31, 32], where U ′ and t denote the
attractive interaction and the transfer energy, respectively. Therefore, we extend the scheme to
our two-band model, and expect that our results are valid for three-dimensional bulk systems.

2.1. The two-band Hubbard model and the self-consistent t-matrix approximation (SCTMA)

We start with the two-band Hubbard model to describe a many-body aspect of e–h systems:
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Ĥ = −
∑

〈i j〉,σ

∑

ν=e,h

tν â
ν†
iσ âνjσ −

∑

jσ,ν

μν n̂
ν
jσ + U

∑

j,ν

n̂νj↑n̂νj↓ − U ′ ∑

jσσ ′
n̂e

jσ n̂h
jσ ′, (1)

where âe†
jσ (âh†

jσ ) denotes a creation operator of an electron (a hole) with spin σ = {↑,↓} at the

j th site and n̂νjσ = âν†
jσ âνjσ with ν = {e, h}. The quantities te (th) and μe (μh) are the transfer

integral of the electrons (holes) between the nearest-neighbour sites and the chemical potential
measured from the centre of the bare electron (hole) band, respectively. The on-site Coulomb
interaction of the e–e (h–h) repulsion and that of the e–h attraction are expressed by U and
−U ′, respectively.

We apply the SCTMA to the model (1). Feynman diagrams contributing to the self-energy
of electrons and holes in the normal phase within the SCTMA are shown in figure 1, where all
the particle–hole and particle–particle ladder diagrams are taken into account with respect to
the interaction U and −U ′. The explicit expression of the self-energy is

�ν(k, ωn) = T

N

∑

q,νm

exp[i(νm + ωn)0
+]�νν(q, νm)Gν(q + k, νm + ωn)

+ 2T

N

∑

q,νm

exp[i(νm − ωn)0
+]�νν̄(q, νm)G ν̄ (q − k, νm − ωn), (2)

where T is the (quasi)temperature, ωn = (2n + 1)πT , and νm = 2πmT with integer n and
m. The symbol 0+ denotes a time infinitesimally later than τ = 0. Here the spin index σ is
omitted because we consider only the spin-symmetric case but the spin weight (a factor of two)
is counted. The single-particle Matsubara Green’s function Gν(k, ωn) defined by the Fourier
transform of −〈Tτ âνjσ (τ )â

ν†
j ′σ 〉 is expressed in terms of the self-energy (2) as

Gν(k, ωn) = 1

iωn + μν − ενk −�ν(k, ωn)
, (3)

where ενk is the band dispersion of the noninteracting electrons/holes. The two-particle
vertex functions �νν′ (q, νm) are obtained as �νν(q, νm) = U [1 − U Kνν(q, νm)]−1

and �νν̄ (q, νm) = −U ′[1 + U ′Kνν̄ (q, νm)]−1, where the pair propagators are
Kνν(q, νm) = −(T/N)

∑
k,ωn

Gν(k, ωn)Gν(q + k, νm + ωn) and Kνν̄ (q, νm) =
−(T/N)

∑
k,ωn

Gν(k, ωn)G ν̄ (q − k, νm − ωn). We combine a local approximation (LA)
with the SCTMA to simplify the self-consistent calculation [41]. The procedure is performed
by neglecting the momentum dependence of the self-energy and the vertex function,
i.e. �ν(k, ωn) → �ν(ωn) and �νν′ (q, νm) → �νν′ (νm). The Green’s function also becomes
local as

Gν(ωn) = 1

N

∑

k

Gν(k, ωn) =
∫

dε
ρ0
ν (ε)

iωn + μν − ε −�ν(ωn)
, (4)

with the noninteracting density of states (DOS) ρ0
ν (ε).

To determine the condensation temperature Tc of the condensation of e–h pairs, we
examine the e–h singlet pair susceptibility χ(q, νm), defined by the Fourier transform of
−〈Tτ âh

j,−σ (τ )â
e
jσ (τ )â

e†
j ′σ (τ

′)âh†
j ′,−σ (τ ′)〉, which is given by the ladder terms corresponding to

�eh(q, νm), i.e.

χ(q, νm) = Keh(q, νm)

1 + U ′Keh(q, νm)
. (5)

Within the SCTMA the repulsive interaction U does not appear explicitly in (5), but it
influences the e–h pair susceptibility through the single-particle Green’s functions. If the
uniform static e–h pair susceptibility χ(0, 0) diverges for T ↘ Tc, it is a signal of the onset
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Figure 1. Feynman diagrams for the self-energy in the normal phase. The solid line denotes the
electron or hole Green’s function Gα , where ᾱ = h (e) for α = e (h).

of the e–h pair condensation. Thus the condensation temperature Tc can be determined by the
condition

1 + U ′Keh(0, 0) = 1 − U ′T
∑

ωn

Ge(ωn)− γG∗
h(ωn)

ζ ∗
h (ωn)− γ ζe(ωn)

= 0, (6)

where ζν(ωn) = iωn +μν−�ν(ωn) and γ = th/te is defined as the e–h band mass ratio me/mh.
Here we have assumed the relation εh

k = γ εe
k. Hereafter we use ρ0

ν (ε) = √
4t2
ν − ε2/(2π t2

ν ).
The quantity te + th is taken as the energy unit.

2.2. Condensation temperature

We shall evaluate the condensation temperature Tc from the normal phase to the e–h pair
condensed phase. First, we consider the effect of the repulsive interaction U on the
condensation temperature Tc. The calculations in this subsection are restricted to the mass
ratio γ = 1. Figure 2 shows the U ′ dependence of Tc for U = 0, 1, and 2 at n = 0.25
and γ = 1. The e–h pair susceptibility in the normal phase diverges for T ↘ Tc, which
means that the e–h pair condensed phase is realized for T < Tc. For U = 0, Tc can be
described well by the BCS result (dotted curve) in the weak-coupling region (U ′ < 0.3), that
is, Tc ∝ exp(−A/U ′) with a constant A. With increasing U ′, the solid curve deviates from
the BCS result, reaches a maximum at U ′ � 1, and then decreases as 1/U ′ for large U ′.
The U ′ dependence of Tc for large U ′ is related to the behaviour of the BEC temperature of a
lattice boson system [31, 32, 40]; the kinetic energy is given by teth/U ′ from the virtual pair
breaking process. Hence the effective mass m∗

e + m∗
h is proportional to U ′, which leads to

T BEC
c ∼ 1/(m∗

e + m∗
h) ∝ teth/U ′. This result implies the BCS–BEC crossover, as expected.

In the presence of U (U = 1 and 2), one can see the reduction of Tc for U ′ < U . This fact
can be understood as a consequence of the suppression of the excitonic correlation. In contrast,
Tc is insensitive to the repulsion U for U ′ > U . This supports the validity of the physical
picture of strongly bound e–h pairs that behave almost like neutral bosons for U ′ > U , which
is consistent with the behaviour of the density of occupied sites [37].

Next, the effect of the repulsion U on the condensation temperature is examined by
changing the e–h particle density n. In figure 3, the U ′ dependence of Tc at U = 2 and

5
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Figure 2. The condensation temperature Tc as a function of U ′ for U = 0, 1, and 2 at n = 0.25 and
γ = 1 [37]. The dotted line denotes the result from the BCS theory.

Figure 3. The condensation temperature Tc as a function of U ′ for n = 0.25 (solid line), 0.5 (dotted
line), and 1.0 (dashed line) at U = 2 and γ = 1 [37]. The inset shows the case of U = 0 for
n = 0.25, 0.5, and 1.0.

γ = 1 is shown for n = 0.25, 0.5, and 1 (half filling). The inset displays the corresponding
U ′ dependence of Tc for U = 0. When U = 0, the condensation temperature Tc increases
slightly in the weak-coupling region (U ′ � 1) as the particle density n is increased. This
behaviour is reasonable for U ′ � 1 for the following reason. Within the BCS theory the
effective attractive interaction between electrons and holes is roughly given by ρ0

ν (ε
ν
F)U

′, where
ενF is the Fermi energy for an uncorrelated system. Hence the effective attraction reaches a
maximum when n = 1, i.e. the band is half filled, in the case of the semicircular density
of states. The presence of U , however, completely changes this tendency. Tc is sufficiently
suppressed by U for U ′ < U as n approaches unity. When we simply consider the effect of
U in the BCS regime, the effective interaction ρ0

ν (ε
ν
F)U

′ could be replaced by ρν(ενF)U
′, where

ρν(ε
ν
F) = − Im Gν(ω + i0+)/π |ω=ενF , the interacting DOS at ω = ενF , is strongly renormalized
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by U [37]. The renormalization becomes strong as n approaches unity [42]. As a result, the
effective interaction is reduced by U as n → 1, leading to the suppression of Tc. Meanwhile,
for large U ′ the contribution of U to Tc is very small regardless of the value of n.

The mass difference γ has an effect of reducing the condensation temperature, which is
qualitatively consistent with the result of the BCS-like pairing theory [36]. In addition to the
reduction of Tc in the weak-coupling BCS regime, our result also involves the suppression of
Tc in the strong-coupling BEC regime. Such a behaviour of Tc can be understood analytically
in the weak- and strong-coupling limits as follows.

In the weak-coupling limit, the condensation temperature can be estimated by the Hartree
term in the self-energy as

T BCS
c = 1.13

√
we

cw
h
c exp

[
− te + th

2tνρ0
ν (ε

ν
F)U

′

]
, (7)

where wνc is a cut-off energy of order ενF . Note that teρ0
e (ε

e
F) = thρ0

h (ε
h
F). The effective e–

h attractive interaction is given by tνρ0
ν (ε

ν
F)U

′. Moreover, the system is characterized by an
energy scale te + th determining the dimensionless effective coupling strength in the weak-
coupling region. In our model the quantity (te + th)−1 is proportional to the reduced mass
memh/(me + mh). Therefore, the transition to the e–h pair condensed phase in the weak-
coupling region is related to the relative motion between electrons and holes, implying the
BCS regime. The γ dependence of Tc in the BCS regime can be roughly evaluated from that of
the cut-off energy wνc . The cut-off energy of holes wh

c should be γwe
c (∼γ te), since εh

F = γ εe
F

(∼γ te). Thus the coefficient of equation (7) becomes
√
we

cw
h
c ∼ √

γ te, and so it is found that
Tc in the BCS regime would be approximately proportional to

√
γ /(1 + γ ).

On the other hand, in the strong-coupling limit, the model (1) can be reduced to a spinless
e–h model:

Ĥ = −
∑

〈i j〉

∑

ν=e,h

tν â
ν†
i âνj − U ′ ∑

j

n̂e
j n̂

h
j , (8)

since the double occupancy at a site by electrons (holes) is forbidden at U = ∞. For large U ′,
this model (8) can be mapped to a hard-core boson model with the kinetic energy 2teth/U ′ and
the potential energy (t2

e + t2
h )/U ′. Using the standard mean-field theory, we can obtain the BEC

temperature in the limit of U → ∞ and large U ′ as

T BEC
c = 2teth

U ′
2n − 1

ln
[
n/(1 − n)

] . (9)

This shows the system is characterized by an energy scale teth/(te + th) determining the
dimensionless effective coupling strength in the strong-coupling region, which is related to the
motion of the centre of mass since (te + th)/(teth) ∝ me + mh. The U ′ dependence of Tc in the
strong-coupling region can be described asymptotically in terms of teth/U ′. The condensation
temperature Tc for various mass ratios γ tends to behave linearly with the slope of −1 (i.e.,
Tc ∝ 1/U ′) and merges in the large-U ′ region, implying the BEC regime. As seen from (9),
the γ dependence of Tc in the BEC regime is given by Tc ∝ teth = γ /(1 + γ )2. Therefore, it is
confirmed that for fixed U ′ and n the condensation temperature is suppressed by the e–h mass
difference in the BEC regime, as well as in the BCS regime. Thus we can emphasize that the
excitonic BCS–BEC crossover can be marked by the change of the characteristic energy scale
from te + th to teth/(te + th).

3. Exciton Mott transition in high-dimensional e–h systems

The metal–insulator transitions in e–h systems have attracted interest for many years [11]: the
exciton Mott transition between an exciton/biexciton gas phase and an e–h plasma phase. Here

7
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we examine the exciton Mott transition in consideration of the minimum elements, i.e. a two-
band Hubbard model (1), by using the dynamical mean-field theory (DMFT) [17]. The DMFT
requires only the locality of the self-energy, and can take full account of local correlations. This
locality and the resulting DMFT become exact in the limit of infinite spatial dimensions and a
good approximation of the three-dimensional systems. In this section, we focus on the normal
phase, where the condensation of e–h pairs (i.e. exciton BEC and e–h BCS state) is not allowed.

3.1. Dynamical mean-field theory (DMFT)

Within the DMFT [17], the many-body problem of the lattice model, i.e. the two-band Hubbard
model (1), is mapped onto the problem of a single-site impurity embedded in an effective
medium. The effective medium, which is dynamical and is represented by the noninteracting
impurity Green function Gν0 (ω) of an effective single-impurity Anderson model (SIAM), is
determined from the self-consistency condition Gν0 (ω)−1 = ω + μν − t2

νGν(ω), where Gν(ω)

is the local Green function for electrons or holes of the model (1). The condition is read as
Gν

imp(ω) = Gν(ω). The interacting impurity Green function of the effective SIAM, Gν
imp(ω),

should be calculated exactly such that effects of the interactions on the impurity site are fully
included. In contrast to the ordinary mean-field approaches, thus, in the DMFT scheme the
local correlations and dynamical quantum fluctuations are taken into full account.

In order to extract a sketch of the phase diagram of the model (1), first we apply the two-site
DMFT [43]. In the two-site DMFT, the effective medium Gν0 (ω) is represented approximately
by only the fewest parameters, i.e., the effective SIAM consists of a single impurity and only a
single bath sites. For the model (1), the corresponding effective two-site SIAM is written as

Ĥimp =
∑

σ

∑

ν=e,h

[
ενc ĉν†

σ ĉνσ + Vν
(
âν†
σ ĉνσ + h.c.

) − μν n̂
ν
σ

]

+ U
∑

ν=e,h

n̂ν↑n̂ν↓ − U ′ ∑

σσ ′
n̂e
σ n̂h

σ ′, (10)

where the bath parameters Vν and ενc denote the hybridization between the impurity (a)
and bath (c) sites, and the energy level of the bath site, respectively. The Green function
of the effective medium (i.e. noninteracting impurity Green function) becomes Gν0 (ω)−1 =
ω + μν − V 2

ν /(ω − ενc ). In the two-site DMFT, the self-consistency condition is reduced to
a simpler equation by the following procedure: the self-energy is expanded in the low-energy
region, �ν(ω) ∼ aν + bνω, and then the resulting local Green function Gν(ω) and impurity
Green function Gν

imp(ω) = [Gν0 (ω)−1 − �ν(ω)]−1 are compared so as to coincide with each
other in the high-energy region. Thereby, the self-consistency equation for Vν is obtained as

V 2
ν = t2

ν Zν, (11)

where Zν ≡ (1 − bν)−1 = [1 − d�ν(ω)/dω|ω=0]−1 is the quasiparticle weight characterizing
the Fermi liquid states. Moreover, the requirement that the particle densities of the original and
impurity models must be equal, i.e. nν = nνimp, leads to the self-consistency condition for ενc ,

∫ 0

−∞
dω Im Gν(ω + i0+) =

∫ 0

−∞
dω Im Gν

imp(ω + i0+). (12)

Evaluating the behaviours of both the quasiparticle weight Zν and the interacting DOS ρν(ω),
we shall discuss the metal–insulator transitions of this system.

3.2. Phase diagram at half filling at zero temperature

First, we concentrate on the special case where both electron and hole bands are half filled,
i.e. n = 1. In this symmetric case, we can set μν = U/2 − U ′ and ενc = 0. For th/te = 1, the
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Figure 4. Phase diagram for the exciton Mott transition in the U ′–U plane at half-filling (n = 1) at
zero temperature for th/te = 1 [44].

phase diagram on the plane of U ′ and U is shown in figure 4. There are three kinds of states:
(I) metallic state, (II) Mott–Hubbard insulating state, and (III) biexciton-like insulating state.
The second-order transitions among these states occur on the solid curves. In the metallic state
(I), Zν has a finite value and there is finite DOS at the Fermi level (the quasiparticle coherent
peak), i.e. ρν(0) �= 0. On the other hand, in both insulating states (II) and (III), Zν = 0 and the
coherent peak of the DOS disappears. However, the physical pictures of the insulating states
(II) and (III) are quite different, as drawn schematically in figure 4: state (II) is induced by
the e–e (h–h) repulsion U on each electron and hole band, while state (III) is realized by the
e–h attraction U ′ on each site [44]. The competition of these two states stabilizes the metallic
state for U � U ′. These results are equivalent to those obtained for the two-orbital repulsive
Hubbard model [45].

We also examine the case of different electron and hole masses. Figure 5 is the phase
diagram on the plane of U ′ and U for th/te = 0.5. A new state (IV) appears between states
(I) and (II), in which Ze �= 0 but Zh = 0, i.e., the electron (hole) band is metallic (insulating).
From common features of figures 4 and 5, we find that (i) the metal–insulator transition between
states (I) and (III) is by no means ‘band selective’ for any ratio th/te and (ii) the position of this
phase boundary on the plane of interactions scaled by te + th is universal with regard to the ratio
th/te. These facts indicate that the transition between the metallic state (I) and the biexciton-
like insulator (III) occurs as a result of the competition between the interactions and the relative
motion of the electron and hole.

3.3. Phase diagram at arbitrary filling at zero temperature

We discuss the case of arbitrary filling. For n �= 1, the process for determining of the
chemical potential μν is added to the self-consistency cycle for ενc and Vν . We carried
out the exact diagonalization calculation to solve the SIAM instead of the two-site DMFT.
Hereafter, th/te = 1 is fixed. The Mott–Hubbard insulator disappears, while the metallic
state and the biexciton-like insulator remain. A remarkable feature is the appearance of a
new insulating phase, called the ‘exciton-like insulator phase’, in rather strong repulsion (large
U and U � U ′). This exciton-like insulator is characterized by Zν �= 0 but ρν(0) = 0 (i.e.,
a gap opens at Fermi level). In addition, phase transitions among these states are first order;

9
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Figure 5. Phase diagram for the exciton Mott transition in the U ′–U plane at half-filling (n = 1) at
zero temperature for th/te = 0.5 [44].

coexisting regions of several phases exist along the phase boundaries. The appearance of the
‘exciton-like insulator phase’ is understood by considering the limit of U → ∞. In this limit,
the model (1) can be mapped onto a single-band attractive Hubbard model with the attraction
−U ′. According to the results of the DMFT study of this model [46, 47], a pairing state appears
in addition to the metallic state. This pairing state corresponds to the exciton-like insulating
state in our model, in which incoherent local e–h pairs (do not condense) are formed.

Figure 6 shows the phase diagram in the U ′–n plane at zero temperature assuming U = U ′
and te = th. In the metallic phase, the density of states at the Fermi level ρν(μν) is finite (left
inset of figure 6) and the quasi-particle weight Zν is also finite. On the other hand, an insulating
phase, which is characterized by ρν(μν) = 0 (right inset of figure 6) and Zν �= 0, is obtained in
the wide region for U ′ � 1 and arbitrary filling. This phase can be assigned as an exciton phase,
in which the incoherent local e–h pairs (do not condense) are formed. Indeed, the critical value
of U ′ = 1 in the low-density limit n → 0 is given by the binding of a free exciton. The Mott–
Hubbard insulator at n = 1 for U = U ′ � 5 could be regarded as the special case (Zν = 0) of
the exciton phase. The shaded area indicates the coexistent region of the metallic and exciton
phases. With varying U ′ and/or n across the shaded region, one can find the first-order transition
between the metallic and exciton phases [48]. Here note that U is not an essential parameter
for the transition since the insulating phase at n �= 1 is induced by U ′. We also point out that
in the case of U < U ′ a biexciton phase is stabilized instead of the exciton phase.

3.4. Phase diagram at finite temperature

The phase diagram for n = 0.25 (one-eighth filling) at finite temperatures is shown in figure 7.
In the shaded region (T � 0.08) the metallic and exciton phases coexist. Here it might be a
feature of the exciton Mott transition at low density and finite temperatures that the inclination
of the phase boundary is opposite to that of the Mott–Hubbard transition. This tendency is
reasonable at lower density, because the binding energy of a free exciton is proportional to U ′
in the model (1) and it corresponds to the phase boundary, i.e., T ≈ U ′, in the low-density
limit. Around the shaded region for T � 0.08 the crossover behaviour between the metallic
and exciton phases is found. As seen in the inset of figure 7, two branches of Zν (solid curves)

10
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Figure 6. Phase diagram for the exciton Mott transition in the U ′–n plane at zero temperature [48].
The left and right insets show the density of states at n = 0.25 for U = U ′ = 1.5 and
U = U ′ = 3.0, respectively. The shaded area is the coexistent region of the metallic and exciton
phases.

Figure 7. Phase diagram for the exciton Mott transition in the U ′–T plane at finite temperature
T for n = 0.25 [48]. Here U = U ′ is assumed. The shaded area is the coexistent region of the
metallic and exciton phases. The dashed curve is the condensation temperature given in section 2.

merge at high temperature (dotted curve), where the metallic and exciton phases can no longer
be distinguished [48].

Our present results will be valid for the intermediate temperatures, i.e. above the
condensation temperature Tc of exciton BEC, but below the temperature corresponding to the e–
h binding energy EB. From simple evaluation of Tc and EB, such a temperature region actually
exists: consider again the limit of U → ∞. In the strong limit of U ′, Tc can be estimated as
of order (te + th)2/U ′ [31, 32]. On the other hand, in the low-density limit n → 0, EB can
be estimated as of order U ′ [32]. Comparing these two characteristic temperatures, such an
intermediate temperature region exists even for not so large U ′ (∼ te + th).

11
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For reference we also plot the condensation temperature (dashed curve in figure 7) of
the e–h pair condensation calculated by the SCTMA in section 2. Roughly speaking, Tc

(or equivalently the pair condensation gap) is proportional to exp(−1/U ′) for U ′ � 1 and
to −1/U ′ for U ′ � 1. Although a quantitative comparison is not appropriate within the
SCTMA calculations, it is expected that for U ′ � 2.5 phase transition occurs in two stages,
i.e. metallic phase (at higher temperatures) → exciton phase → e–h pair condensed phase
(exciton BEC state), and takes place with decreasing T . In the weak-coupling region the direct
phase transition between the metallic phase and the e–h pair condensed phase (e–h BCS state)
occurs. Detailed analysis is now in progress.

4. Quantum states in one-dimensional e–h systems

We shall consider a high-density electron–hole system in one spatial dimension (d = 1). This
system is related to semiconductor wire lasers, and then the emergence mechanism of optical
gain attracts interest [49]. Since the mean-field approximation is invalid in low dimensions,
here we shall make use of the exactly solvable models. We employ the two-band Tomonaga–
Luttinger (TL) model [50] to explore the many-body effects in a quasiequilibrium state of
electron–hole systems in d = 1 [51]. Densities of electrons in the conduction band and holes
in the valence band are assumed to be equal to each other (the identical Fermi wavevector
kF ≡ ke

F = kh
F for electrons and holes), both of which are high enough that the Fermi points are

well defined in both bands.
In this d = 1 two-band system, low-energy excitations near each quasi-Fermi level are

very important for quantum orderings and their dynamical responses. Then the bosonization
method is used to treat the collective excitations of the degenerate electrons and holes. To this
end, we linearize the band dispersions near the Fermi points as εν(k) � jvνF(k − jkF) near the
right ( j = +1) and the left ( j = −1) Fermi points k = jkF. Here ν = {e, h} and the Fermi
velocities of the conduction and valence bands are ve

F ∝ (m∗
e)

−1 and vh
F ∝ (m∗

h)
−1, respectively.

When both bands are far off half filling, the Umklapp processes are negligible. Then the
interparticle interaction matrix element is assumed to be spin independent and parametrized
to the nine interaction matrix elements: ge

i (q), gh
i (q), and geh

i (q) for i = 1, 2, 4, which are
momentum dependent in general. In these interaction parameters, g1 specifies the backward
scatterings, which will be discussed in section 4.1. First we study the forward-scattering TL
model, which includes essentially only intrabranch, short-range interactions, g2 (ge

2, gh
2, and

geh
2 ). Next we examine effects of the long-range interaction and the backward scatterings.

4.1. Case of the short-range forward-scattering interaction

According to the bosonization procedure, electron (and hole) field operators can be written in
terms of the phase fields, or equivalently boson creation and annihilation operators, e.g.

ψ̂e
+σ (x) = (2πα)−1/2 exp(+ikFx)

× exp

[
i

2

{
θ̂e(x)+ θ̂−

e (x)+ σ [φ̂e(x)+ φ̂−
e (x)]

}
+ iϕ̂e

1σ

]
, (13)

ψ̂e
−σ (x) = (2πα)−1/2 exp(−ikFx)

× exp

[
− i

2

{
θ̂e(x)− θ̂−

e (x)+ σ [φ̂e(x)− φ̂−
e (x)]

}
+ iϕ̂e

2σ

]
, (14)

for the electron fields of branches j = +1 and −1, respectively, where α is a cut-off and
ϕ̂e

jσ is necessary for ensuring the anticommutation relation of ψ̂e
jσ with different j and σ . In

our definition, ψ̂h
jσ (x) annihilates a hole (not an electron) in the valence band of spin σ and

12
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branch j . Using the phase variables, we obtain the phase Hamiltonian of the forward-scattering
two-band TL model [52], Ĥ ≡ Ĥρ + Ĥσ , where Ĥρ (Ĥσ ) describes the charge (spin) sector as

Ĥρ =
∫

dx{Ae P̂2
e (x)+ Ce[∇ θ̂e(x)]2 + Ah P̂2

h (x)+ Ch[∇ θ̂h(x)]2

+2Ceh∇ θ̂e(x)∇ θ̂h(x)}, (15)

Ĥσ =
∫

dx {Be�̂
2
e(x)+ De[∇φ̂e(x)]2 + Bh�̂

2
h(x)+ Dh[∇φ̂h(x)]2}. (16)

Here θ̂e(x) (θ̂h(x)) is the charge sector of the conduction (valence) electrons, whose conjugate
momentum is P̂e(x) ≡ −(4π)−1∂θ̂−

e (x)/∂x (P̂h(x) ≡ −(4π)−1∂θ̂−
h (x)/∂x), while φ̂e(x)

(φ̂h(x)) is the spin phase, whose conjugate momentum is �̂e(x) ≡ −(4π)−1∂φ̂−
e (x)/∂x

(�̂h(x) ≡ −(4π)−1∂φ̂−
h (x)/∂x). Coefficients are given by Aν ≡ 2π(v̄νF − gν2), Bν ≡ 2πv̄νF,

Cν ≡ (v̄νF + gν2)/8π , Dν ≡ v̄νF/8π , and Ceh ≡ geh
2 /4π , where v̄νF ≡ vνF + gν4 is the normalized

Fermi velocity. The charge part of the forward-scattering Hamiltonian, Ĥρ , is diagonalized by
the unitary transformation: (θ̂e, θ̂h) → (θ̂1, θ̂2) via

(
θ̂e

θ̂h

)
=

( √
Ae cos� −√

Ae sin�√
Ah sin�

√
Ah cos�

)(
θ̂1

θ̂2

)
, (17)

with � being given by tan 2� ≡ 2Ceh
√

Ae Ah/ (AeCe − AhCh). Consequently, the
diagonalized forward-scattering Hamiltonian becomes

Ĥforward =
∫

dx
∑

i=1,2

{
P̂2

i (x)+ [v(i)ρ ∇ θ̂i (x)]2
}

+ Ĥσ , (18)

where P̂i is the conjugate momentum for θ̂i (Ĥσ is already diagonalized). The motions of four
phases, θ̂1, θ̂2, φ̂e, and φ̂h, are described by massless acoustic modes, which have gapless linear
dispersions in their excitation spectra. The velocities of the transformed charge phases, θ̂1 and
θ̂2, are

v(i)ρ =
{

2(AeCe + AhCh)± 2
[
(AeCe − AhCh)

2 + 4C2
eh Ae Ah

]1/2
}1/2

, (19)

respectively, where i = 1 (2) corresponds to the + (−) sign of the right-hand side. On the
other hand, velocities of the spin phases, φ̂e and φ̂h, are ve

F and vh
F, respectively: vνσ = vνF.

In d = 1 quantum many-particle systems, the competition among various Fermi-
surface instabilities occurs through quantum fluctuations even at zero temperature. There
are 16 possible two-body order parameters, Ô(x). All the four-body correlation functions,
〈Ô(x, τ )Ô†(0, 0)〉, behave like [max(x, τ )]−η for large x and large imaginary time τ . The
exponent η for each order parameter is given in [52]. The phase diagram of the quasi-thermal-
equilibrium state was given, which is divided into the following four regions [52].

(a) Exciton BEC phase. The corresponding two-body order parameter is

ÔBEC(x) ≡
∑

j=±1

∑

σ

ψ̂
e†
jσ (x)ψ̂

h†
j∓σ (x). (20)

When the repulsive interaction between conduction electrons and valence ones is strong
(positive and large geh

2 ), i.e. strong attraction between electrons and holes, the exciton BEC
at zero total momentum predominates. Spin-singlet and triplet exciton BECs are degenerate
in our spin-independent forward-scattering model. The exciton density wave (EDW) at ±2kF

momentum, ÔEDW(x) ≡ ∑
j=±1

∑
σ ψ̂

e†
jσ (x)ψ̂

h†
− j∓σ (x), cannot prevail in the whole plane.

13
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(b) Density wave phase. When the repulsion between the electrons within each band is
strong (positive and large ge

2 or gh
2), the ν charge-density wave (ν-CDW) and the ν spin-density

wave (ν-SDW) predominate for ν = {e, h}. Order parameters of the ν-CDW and ν-SDW are

Ôν
CDW(x) ≡

∑

j=±1

∑

σ

ψ̂
ν†
jσ (x)ψ̂

ν
− jσ (x), (21)

Ôν
SDW(x) ≡

∑

j=±1

∑

σ

σ ψ̂
ν†
jσ (x)ψ̂

ν
− jσ (x), (22)

respectively. The valence-band electrons (i.e. holes) with heavier mass have the stronger
tendency toward the ordering. When the velocity ratio |vh

F/v
e
F| is decreased from unity, the

h-CDW and h-SDW region extends and invades the exciton BEC region.
(c) Ordinary intraband superconductivity phase. The attractive interactions, e.g. negative

gh
2 , yield conventional superconductivity (SC) resulting in intraband pairing with zero total

momentum. The order parameter is defined as

Ôν
SC(x) ≡

∑

j=±1

∑

σ

ψ̂νjσ (x)ψ̂
ν
− j∓σ (x). (23)

The valence-band electrons with heavier mass have stronger tendency toward ordering. Singlet
and triplet SCs are degenerate.

(d) Unconventional interband superconductivity phase. On the other hand, the negative
geh

2 causes interband Cooper pairing with ±2kF momentum:

Ôeh
SC(x) ≡

∑

j=±1

∑

σ

ψ̂e
jσ (x)ψ̂

h†
j±σ (x). (24)

This unconventional superconductivity is a peculiar feature of d = 1 e–h systems. The
interband SC with zero total momentum,

∑
j=±1

∑
σ ψ̂

e
jσ (x)ψ̂

h†
− j±σ (x), does not appear.

4.2. Relation to the Fermi-edge singularity

We shall discuss the optical absorption spectrum of the degenerate electron–hole system in
d = 1 [53]. The linear absorption spectrum W (ω) is related to the Fourier transform of the
correlation function, 〈P̂(t)P̂†(0)〉, where the dipole operator P̂(t) is given by

P̂(t) = |M|
∫

dx
∑

σ

ψ̂e†
σ (x, t)ψ̂h†

−σ (x, t)eiE0t , (25)

where M is an interband matrix element (assumed to be constant), ψ̂νσ (x, t) =
exp(iĤt)ψ̂νσ (x) exp(−iĤt), ψ̂νσ = ∑

j=±1 ψ̂
ν
jσ , and E0 is the energy of the absorption edge

in the single-electron picture. The correlation function of the dipole operator contains the
correlation function CsBEC(t) ≡ 〈ÔsBEC(x, t)Ô†

sBEC(0, 0)〉 of the spin-singlet exciton BEC,
ÔsBEC(x) ≡ ∑

j=±1

∑
σ ψ̂

e
jσ † (x)ψ̂h†

j−σ (x). For large t , the correlation function behaves like
CsBEC(t) ∼ t−ηsBEC with an exponent ηsBEC. This means that the optical spectrum shows the
power-law singularity like W (ω) ∼ (h̄ω−εF)

β�(h̄ω−εF) in the vicinity of εF, where εF is the
absorption-edge energy and β is the critical exponent: β = ηsBEC − 2 = βex + βc−oc + βv−oc,
where

βex = −π[v(1)ρ − v(2)ρ ]
2
√

Ae Ah

[
1 + Ae Ah

4π2v
(1)
ρ v

(2)
ρ

]
sin 2�, (26)

βc−oc = Ahs1

8πv(1)ρ v
(2)
ρ

+ πs2

2Ah
− 1

2
, (27)

βv−oc = Aes2

8πv(1)ρ v
(2)
ρ

+ πs1

2Ae
− 1

2
. (28)
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Here si ≡ 1
2 [v(1)ρ + v(2)ρ ± (v(1)ρ − v(2)ρ ) cos 2�] with i = 1 (2) corresponding to the + (−)

sign. This power-law anomaly in optical spectra near an edge energy is one of the Fermi-edge
singularities (FESs).

In e–h systems, the FES exponent β is determined by the correlation exponent, ηsBEC,
of the singlet-exciton BEC. The divergent edge spectrum (corresponding to β < 0) can be
observed when the electron–hole interaction is attractive (geh

2 > 0 and geh
4 > 0) and for rather

weak electron–electron and hole–hole correlations [53]. When the excitons lie completely at
the BEC state at zero temperature, an optical spectrum is expected to show a δ-function-like
peak if we ignore the quantum fluctuations. Actually, however, quantum fluctuation can never
be neglected in d = 1 systems and it tends to destroy the exciton BEC. Consequently, the
δ-function-like peak spectrum vanishes and is replaced by the power-law peak, which is really
the FES and is a remnant of the exciton BEC. In this sense, the FES in e–h systems results
from a fluctuating condensed state of many d = 1 excitons. Effects of the randomness were
discussed in [52, 53].

4.3. Case of the long-range Coulomb interaction: biexciton liquid

We shall consider the case where the interaction potential behaves as unscreened Coulomb
potential (∝1/r ) at long interparticle distance r [54]. Hence, the interaction parameters in the
g-ology should become momentum dependent. The e–e, h–h, and e–h backward scatterings are
also taken into account, and are parametrized as ge

1, gh
1 , and geh

1 , respectively. In this subsection,
for simplicity, we restrict ourselves to the e–h symmetric case, vF = ve

F = vh
F and ge

i = gh
i .

Due to r−1 dependence of the Coulomb interaction, the coupling parameters of the forward
scattering show a logarithmic divergence at q → 0 [55]. In fact, they can be approximated
in the form of ge

2,4(q) = gh
2,4(q) ∼ g2,4 + 2g0K0(|q|d) and geh

2,4(q) ∼ −g′
2,4 − 2g0K0(|q|d)

with the modified Bessel function K0(x) and the effective diameter of the quantum wire d .
The coupling constants g2,4 and g′

2,4 specify the short-range part of forward scattering, and
g0 = e2/επvF its long-range part, where ε denotes the dielectric constant. On the other
hand, the coupling parameters of the backward scattering can be substituted by constants as
ge

1(q) = gh
1(q) = g1 and geh

1 (q) = −g′
1, because they show no singularity at q ∼ ±2kF.

We here introduce the phase operators �̂ξ
μ(x) and �̂ξ

μ(x) (μ = {ρ, σ }, ξ = {+,−})
through ∂�̂±

ρ (x)/∂x = −π ∑
jσ ρ̂

±
jσ , ∂�̂±

σ (x)/∂x = −π ∑
jσ (−1)δσ↓ ρ̂±

jσ , ∂�̂±
ρ (x)/∂ =

π
∑

jσ j ρ̂±
jσ , ∂�̂±

σ (x)/∂x = π
∑

jσ j (−1)δσ↓ ρ̂±
jσ , where δσσ ′ is the Kronecker’s delta, ρ̂±

jσ =
(ρ̂e

jσ ± ρ̂h
jσ )/2, and ρ̂νjσ (x) denotes the density at position x for the particle ν = {e, h}

with indices j = ±1 and σ = {↑,↓}. It is noteworthy that �̂+
ρ and �̂−

ρ are associated
with the mass and charge densities (the sum and difference of electron and hole densities),
respectively. Then, the g-ology Hamiltonian with the backward scatterings is written as
Ĥ = ∑

μ=ρ,σ,ξ=± Ĥξ
μ + Ĥintra

bs + Ĥinter
bs , where

Ĥξ
μ = vξμ

2π

∫
dx

{
K ξ
μ

(
∂�̂ξ

μ

∂x

)2

+ 1

K ξ
μ

(
∂�̂ξ

μ

∂x

)2 }

+ vF

π

∫
dx dx ′ 2g0δξ−δμρ√

(x − x ′)2 + d2

∂�̂−
ρ (x)

∂x

∂�̂−
ρ (x

′)
∂x ′ ,

Ĥintra
bs = vFg1

πα2

∫
dx cos 2�̂+

σ cos 2�̂−
σ ,

Ĥinter
bs = −vFg′

1

πα2

∫
dx

∑

ξ

cos 2�̂−
ρ cos 2�̂ξ

σ .

(29)
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Here, we used the renormalized velocity vξμ = vF

√
aξμbξμ and coupling constant K ξ

μ =
√

aξμ/b
ξ
μ,

where aξμ and bξμ are given as a±
ρ ≡ 1+g4−g2+g1/2∓g′

4±g′
2, b±

ρ ≡ 1+g4+g2+g1/2∓g′
4∓g′

2,
a±
σ ≡ 1 + g1/2, and b±

σ ≡ 1 − g1/2. As in (13) and (14), the field operator can be expressed
as ψ̂νjσ (x) = (2πα)−1/2ηνjσ exp[i j (kFx + φ̂νjσ )] in terms of the Klein factor ηνjσ and the phase

operators φ̂e
jσ ≡ ∑

ξ=±(−�̂ξ
ρ − σ�̂ξ

σ + j�̂ξ
ρ + jσ�̂ξ

σ )/2 and φ̂h
jσ ≡ ∑

ξ=± ξ(−�̂ξ
ρ − σ�̂ξ

σ +
j�̂ξ

ρ + jσ�̂ξ
σ )/2.

If we neglect the intra- and interband backward scattering terms, Hintra
bs and Hinter

bs , the
Hamiltonian is decoupled into four parts, each reduced to the TL form discussed in the
previous subsection. In this case, we evaluate the asymptotic behaviour of the various 16-
body correlation functions of the form C(x) = 〈Ô†(x)Ô(0)〉 [55]. We find that the correlation
function of

ÔBED(x) = ψ̂
e†
+↑ψ̂

e†
+↓ψ̂

h†
−↓ψ̂

h†
−↑ψ̂

h
+↑ψ̂

h
+↓ψ̂

e
−↓ψ̂

e
−↑ + h.c. ∼ cos 4�̂−

ρ

shows the slowest decay. This eight-body operator ÔBED(x) appears in the slowly varying
(0kF) component of the biexciton density (BED) operator. The biexciton creation operator here
is given as ψ̂e†

↑ ψ̂
e†
↓ ψ̂

h†
↓ ψ̂

h†
↑ with ψ̂ν†

σ ≡ ∑
j=±1 ψ̂

ν†
jσ (x). This fact shows the strong tendency

towards biexciton formation. In this sense, the ground state has a ‘biexciton liquid’ character in
the case of the long-range Coulomb interaction. This is in striking contrast to the short-range
case, where the 2kF-CDW is dominant.

4.4. Effects of the backward scattering: biexciton crystallization

Next we discuss effects of the backward scattering. Intraband backward scattering is
(marginally) irrelevant if the interband scattering is absent. Thus, we can neglect it to
investigate the relevancy of the interband backward scattering. We treat the interband backward
scattering term in the self-consistent harmonic approximation (SCHA) and the renormalization
group (RG) method. Both results show that the interband backward scattering is always
relevant, independent of g0 > 0. Because the coupling constant g′

1 is renormalized to a large
value, �̂−

ρ and �̂±
σ are fixed by the condition cos 2�̂−

ρ = cos 2�̂+
σ = cos 2�̂−

σ = ±1, which
minimizes the interband backward scattering term. This localization of the phases leads to
the energy gaps � in the excitation modes corresponding to (μ, ξ) = (ρ,−), (σ,+), and
(σ,−). The point is that the charge excitation, (μ, ξ) = (ρ,−), has a gap. This results in
the system being an insulator even in the high-e–h-density limit, and suggests that the exciton
Mott transition is absent at absolute zero temperature in one dimension. There remains a single
gapless excitation corresponding to (μ, ξ) = (ρ,+) since Ĥ+

ρ is decoupled from the other part
of the Hamiltonian. As will be mentioned below, its coupling constant K +

ρ specifies the power
of the algebraic decay of some correlation functions.

Let us discuss the character of the insulating ground state obtained above. To this end, we
investigate the asymptotic behaviour of the correlation function C(x). We find two important
results. (i) Because the phases �̂−

ρ and �̂±
σ are localized, the fluctuations of their conjugate

operators �̂−
ρ and �̂±

σ diverge. Thus, C(x) decays exponentially if Ô(x) contains �̂−
ρ or

�̂±
σ . (ii) If Ô(x) vanishes under the phase-fixing condition, C(x) shows an exponential decay.

Owing to these criteria, it is sufficient to consider the following two operators:

ÔMDW(x) ≡
∑

ν=e,h

Ôν
CDW(x)

=
∑

ν=e,h

∑

j=±1

∑

σ

ψ̂
ν†
jσ (x)ψ̂

ν
− jσ (x) ∼ cos[2kFx − �̂+

ρ (x)], (30)
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Figure 8. Schematic view of the biexciton crystal. Open (solid) circles mean electrons in a
conduction band (holes in a valence band). Two of them get together to form a CDW-like pair in
each band. Such pairs of electrons and holes are aligned spatially in phase resulting in the biexciton
crystallization (dashed oval lines).

ÔBEI(x) ≡
∑

j=±1

∑

σ

ψ̂e
jσ (x)ψ̂

e
j−σ (x)ψ̂

h
− j−σ (x)ψ̂

h
− jσ (x) ∼ exp[2i�̂+

ρ (x)], (31)

where we use the condition cos 2�̂−
ρ = cos 2�̂+

σ = cos 2�̂−
σ = 1. The operator ÔMDW(x)

denotes the 2kF oscillatory component of the mass density wave (MDW), while ÔBEI(x)
annihilates a biexciton located at x describing the BEC of biexcitons (biexcitonic insulator,
BEI). The asymptotic forms of these correlation functions are

CMDW(x) ∼ x−K +
ρ /2, (32)

CBEI(x) ∼ x−2/K +
ρ . (33)

As a result, the formation of the 2kF-MDW or the BEI shows the strongest instability at K +
ρ < 2

and K +
ρ > 2, respectively.

In the weak-coupling regime (gi � 1 and g′
i � 1), we obtain K +

ρ ∼ 1, which leads to
the strong instability toward the formation of the 2kF-MDW. The formation of the 2kF-MDW
can be interpreted as ‘biexciton crystallization’. In fact, the 2kF charge density waves of the
electron (e-CDW) and the hole (h-CDW) are simultaneously formed in an in-phase way in the
2kF-MDW state, since the fluctuation of the total charge density is strongly suppressed. As a
result, two electrons and two holes are effectively accumulated to form ‘biexcitons’ arranged
regularly with the periodicity π/kF, as schematically shown in figure 8.

The above discussion is confined to the case of zero temperature. If the temperature kBT is
larger than the energy gap�, the effects of the backward scattering terms are negligible. Then,
the system shows ‘biexciton liquid’ character within the length scale ∼vF/kBT , as discussed
in section 4.3. Detailed analysis at finite temperature will be reported in the near future.

5. Concluding remarks

We review recent theoretical results on quantum cooperative phenomena in e–h systems. In
particular, the exciton BEC–BCS crossover and the exciton Mott transition in high-dimensional
e–h systems, and the biexciton crystallization in one-dimensional e–h systems, are introduced.

By applying the self-consistent t-matrix approximation to the e–h two-band Hubbard
model, the condensation temperature to the e–h pair condensed phase is discussed. Analysis
in the case of γ �= 1 has allowed us to capture the BCS–BEC crossover as the change of the
characteristic energy scale from te +th to teth/(te+th), where the former is related to the relative
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motion and the latter to the motion of the centre of mass. We should mention limitations of the
present SCTMA. The n dependence of Tc in the large-U ′ region is opposite to that of the exact
result in the limit of U → ∞ and large U ′. The result of figure 3 suggests a decreasing function
of n while the exact result is an increasing function of n. Another difficulty is that the SCTMA
cannot describe insulating states without any symmetry breaking [42], such as the exciton and
biexciton phases. The long-range part of the Coulomb interaction was not considered here. It
may become crucial, particularly in the BEC regime.

To clarify how the exciton Mott transition depends on the interaction strengths, a two-band
Hubbard model is studied with the dynamical mean-field theory. The phase diagrams in the U–
U ′ and U ′–n planes are obtained. When both electron and hole bands are half filled, two types
of insulating states appear: the Mott–Hubbard insulator for U > U ′ and the biexciton-like
insulator for U < U ′. Even when away from half-filling, we find the phase transition between
the exciton- or biexciton-like insulator and a metallic state. This transition is found to be the
first-order transition. With increasing temperature, this first-order transition continues until the
temperature is at a critical point. A detailed phase diagram including quantum condensed states
will be reported elsewhere.

Quantum orders of one-dimensional e–h systems are also investigated with the
bosonization and the renormalization-group techniques. The systems are insulating even at the
high-density limit and the exciton Mott transition never occurs at absolute zero temperature.
We find the insulating ground state exhibits a strong instability towards the crystallization of
biexcitons.

All the electron–hole issues attracting interest recently are related to quantum many-body
problems [56] and/or to nonequilibrium dynamics far from the thermal equilibrium. Not only
an electron, a hole, and the mutual Coulomb interaction but also their stage (i.e. dimensionality
of the materials) and some supporting players (e.g. phonons, randomness) play interesting roles
to yield novel properties. These open new field in photophysics. Moreover, it will be of great
interest to use photons not only as a probe for materials but also as a trigger for drastic change
and control of the material states including even the ground state [57]. Such photoinduced
phase transitions [58, 59] are also a new, promising research field.
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